Wellcome

Mixtures : (Record no. 523100)

MARC details
000 -LEADER
fixed length control field 12350cam a2200781Ia 4500
001 -
control field ocn759530314
003 -
control field OCoLC
005 -
control field 20200709140102.0
006 -
fixed length control field m o d
007 -
fixed length control field cr cn|||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 111103s2011 njua ob 001 0 eng d
040 ## -
-- UIU
-- eng
-- pn
-- UIU
-- YDXCP
-- WAU
-- CDX
-- COO
-- OCLCF
-- EBLCP
-- N$T
-- DEBSZ
-- AU@
-- OHS
-- E7B
-- IDEBK
-- REDDC
-- CHVBK
-- OCLCQ
-- DG1
019 ## -
-- 742798716
-- 794326191
-- 808669906
-- 816882892
-- 880752033
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119995678
Qualifying information (electronic bk.)
International Standard Book Number 1119995671
Qualifying information (electronic bk.)
International Standard Book Number 9781119995685
Qualifying information (electronic bk.)
International Standard Book Number 111999568X
Qualifying information (electronic bk.)
-- 9781119993896
Qualifying information (cloth)
-- 111999389X
Qualifying information (cloth)
024 8# -
-- 9786613405593
029 1# -
-- AU@
-- 000050012976
-- AU@
-- 000052898899
-- CHNEW
-- 000613817
-- DEBBG
-- BV043393664
-- DEBSZ
-- 372696066
-- DEBSZ
-- 396994733
-- DEBSZ
-- 425883728
-- DEBSZ
-- 430990596
-- DEBSZ
-- 44924119X
-- NZ1
-- 13751537
-- NZ1
-- 15341321
035 ## -
-- (OCoLC)759530314
-- (OCoLC)742798716
-- (OCoLC)794326191
-- (OCoLC)808669906
-- (OCoLC)816882892
-- (OCoLC)880752033
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
-- QA273.6
-- .M59 2011
072 #7 -
-- MAT
-- 029000
-- bisacsh
082 04 -
Classification number 519.2/4
-- 22
049 ## -
-- MAIN
245 00 - TITLE STATEMENT
Title Mixtures :
Remainder of title estimation and applications /
Statement of responsibility, etc edited by Kerrie L. Mengersen, Christian P. Robert, D. Michael Titterington.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xviii, 311 pages) :
Other physical details illustrations.
650 #0 -
Topical term or geographic name as entry element Mixture distributions (Probability theory)
Topical term or geographic name as entry element Mixture distributions (Probability theory)
Topical term or geographic name as entry element MATHEMATICS
Topical term or geographic name as entry element Mixture distributions (Probability theory)
700 1# -
Personal name Mengersen, Kerrie L.
Personal name Robert, Christian P.,
Personal name Titterington, D. M.
856 40 -
Uniform Resource Identifier https://doi.org/10.1002/9781119995678
264 #1 -
-- Hoboken, N.J. :
-- Wiley,
-- 2011.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
490 1# -
-- Wiley series in probability and statistics
504 ## -
-- Includes bibliographical references and index.
505 00 -
-- Machine generated contents note:
-- 1.
-- The EM algorithm, variational approximations and expectation propagation for mixtures /
-- D. Michael Titterington --
-- 1.1.
-- Preamble --
-- 1.2.
-- The EM algorithm --
-- 1.2.1.
-- Introduction to the algorithm --
-- 1.2.2.
-- The E-step and the M-step for the mixing weights --
-- 1.2.3.
-- The M-step for mixtures of univariate Gaussian distributions --
-- 1.2.4.
-- M-step for mixtures of regular exponential family distributions formulated in terms of the natural parameters --
-- 1.2.5.
-- Application to other mixtures --
-- 1.2.6.
-- EM as a double expectation --
-- 1.3.
-- Variational approximations --
-- 1.3.1.
-- Preamble --
-- 1.3.2.
-- Introduction to variational approximations --
-- 1.3.3.
-- Application of variational Bayes to mixture problems --
-- 1.3.4.
-- Application to other mixture problems --
-- 1.3.5.
-- Recursive variational approximations --
-- 1.3.6.
-- Asymptotic results --
-- 1.4.
-- Expectation-propagation --
-- 1.4.1.
-- Introduction --
-- 1.4.2.
-- Overview of the recursive approach to be adopted.
-- 1.4.3.
-- Finite Gaussian mixtures with an unknown mean parameter --
-- 1.4.4.
-- Mixture of two known distributions --
-- 1.4.5.
-- Discussion --
-- Acknowledgements --
-- References --
-- 2.
-- Online expectation maximisation /
-- Olivier Cappe --
-- 2.1.
-- Introduction --
-- 2.2.
-- Model and assumptions --
-- 2.3.
-- The EM algorithm and the limiting EM recursion --
-- 2.3.1.
-- The batch EM algorithm --
-- 2.3.2.
-- The limiting EM recursion --
-- 2.3.3.
-- Limitations of batch EM for long data records --
-- 2.4.
-- Online expectation maximisation --
-- 2.4.1.
-- The algorithm --
-- 2.4.2.
-- Convergence properties --
-- 2.4.3.
-- Application to finite mixtures --
-- 2.4.4.
-- Use for batch maximum-likelihood estimation --
-- 2.5.
-- Discussion --
-- References --
-- 3.
-- The limiting distribution of the EM test of the order of a finite mixture /
-- Pengfei Li --
-- 3.1.
-- Introduction --
-- 3.2.
-- The method and theory of the EM test --
-- 3.2.1.
-- The definition of the EM test statistic --
-- 3.2.2.
-- The limiting distribution of the EM test statistic --
-- 3.3.
-- Proofs.
-- 3.4.
-- Discussion --
-- References --
-- 4.
-- Comparing Wald and likelihood regions applied to locally identifiable mixture models /
-- Bruce G. Lindsay --
-- 4.1.
-- Introduction --
-- 4.2.
-- Background on likelihood confidence regions --
-- 4.2.1.
-- Likelihood regions --
-- 4.2.2.
-- Profile likelihood regions --
-- 4.2.3.
-- Alternative methods --
-- 4.3.
-- Background on simulation and visualisation of the likelihood regions --
-- 4.3.1.
-- Modal simulation method --
-- 4.3.2.
-- Illustrative example --
-- 4.4.
-- Comparison between the likelihood regions and the Wald regions --
-- 4.4.1.
-- Volume/volume error of the confidence regions --
-- 4.4.2.
-- Differences in univariate intervals via worst case analysis --
-- 4.4.3.
-- Illustrative example (revisited) --
-- 4.5.
-- Application to a finite mixture model --
-- 4.5.1.
-- Nonidentifiabilities and likelihood regions for the mixture parameters --
-- 4.5.2.
-- Mixture likelihood region simulation and visualisation --
-- 4.5.3.
-- Adequacy of using the Wald confidence region.
-- 4.6.
-- Data analysis --
-- 4.7.
-- Discussion --
-- References --
-- 5.
-- Mixture of experts modelling with social science applications /
-- Thomas Brendan Murphy --
-- 5.1.
-- Introduction --
-- 5.2.
-- Motivating examples --
-- 5.2.1.
-- Voting blocs --
-- 5.2.2.
-- Social and organisational structure --
-- 5.3.
-- Mixture models --
-- 5.4.
-- Mixture of experts models --
-- 5.5.
-- A mixture of experts model for ranked preference data --
-- 5.5.1.
-- Examining the clustering structure --
-- 5.6.
-- A mixture of experts latent position cluster model --
-- 5.7.
-- Discussion --
-- Acknowledgements --
-- References --
-- 6.
-- Modelling conditional densities using finite smooth mixtures /
-- Robert Kohn --
-- 6.1.
-- Introduction --
-- 6.2.
-- The model and prior --
-- 6.2.1.
-- Smooth mixtures --
-- 6.2.2.
-- The component models --
-- 6.2.3.
-- The prior --
-- 6.3.
-- Inference methodology --
-- 6.3.1.
-- The general MCMC scheme --
-- 6.3.2.
-- Updating & beta; and I using variable-dimension finite-step Newton proposals --
-- 6.3.3.
-- Model comparison --
-- 6.4.
-- Applications --
-- 6.4.1.
-- A small simulation study.
-- 6.4.2.
-- LIDAR data --
-- 6.4.3.
-- Electricity expenditure data --
-- 6.5.
-- Conclusions --
-- Acknowledgements --
-- Appendix: Implementation details for the gamma and log-normal models --
-- References --
-- 7.
-- Nonparametric mixed membership modelling using the IBP compound Dirichlet process /
-- David M. Blei --
-- 7.1.
-- Introduction --
-- 7.2.
-- Mixed membership models --
-- 7.2.1.
-- Latent Dirichlet allocation --
-- 7.2.2.
-- Nonparametric mixed membership models --
-- 7.3.
-- Motivation --
-- 7.4.
-- Decorrelating prevalence and proportion --
-- 7.4.1.
-- Indian buffet process --
-- 7.4.2.
-- The IBP compound Dirichlet process --
-- 7.4.3.
-- An application of the ICD: focused topic models --
-- 7.4.4.
-- Inference --
-- 7.5.
-- Related models --
-- 7.6.
-- Empirical studies --
-- 7.7.
-- Discussion --
-- References --
-- 8.
-- Discovering nonbinary hierarchical structures with Bayesian rose trees /
-- Katherine A. Heller --
-- 8.1.
-- Introduction --
-- 8.2.
-- Prior work --
-- 8.3.
-- Rose trees, partitions and mixtures --
-- 8.4.
-- Avoiding needless cascades --
-- 8.4.1.
-- Cluster models.
-- 8.5.
-- Greedy construction of Bayesian rose tree mixtures --
-- 8.5.1.
-- Prediction --
-- 8.5.2.
-- Hyperparameter optimisation --
-- 8.6.
-- Bayesian hierarchical clustering, Dirichlet process models and product partition models --
-- 8.6.1.
-- Mixture models and product partition models --
-- 8.6.2.
-- PCluster and Bayesian hierarchical clustering --
-- 8.7.
-- Results --
-- 8.7.1.
-- Optimality of tree structure --
-- 8.7.2.
-- Hierarchy likelihoods --
-- 8.7.3.
-- Partially observed data --
-- 8.7.4.
-- Psychological hierarchies --
-- 8.7.5.
-- Hierarchies of Gaussian process experts --
-- 8.8.
-- Discussion --
-- References --
-- 9.
-- Mixtures of factor analysers for the analysis of high-dimensional data /
-- Suren I. Rathnayake --
-- 9.1.
-- Introduction --
-- 9.2.
-- Single-factor analysis model --
-- 9.3.
-- Mixtures of factor analysers --
-- 9.4.
-- Mixtures of common factor analysers (MCFA) --
-- 9.5.
-- Some related approaches --
-- 9.6.
-- Fitting of factor-analytic models --
-- 9.7.
-- Choice of the number of factors q --
-- 9.8.
-- Example --
-- 9.9.
-- Low-dimensional plots via MCFA approach.
-- 9.10.
-- Multivariate t-factor analysers --
-- 9.11.
-- Discussion --
-- Appendix --
-- References --
-- 10.
-- Dealing with label switching under model uncertainty /
-- Sylvia Fruhwirth-Schnatter --
-- 10.1.
-- Introduction --
-- 10.2.
-- Labelling through clustering in the point-process representation --
-- 10.2.1.
-- The point-process representation of a finite mixture model --
-- 10.2.2.
-- Identification through clustering in the point-process representation --
-- 10.3.
-- Identifying mixtures when the number of components is unknown --
-- 10.3.1.
-- The role of Dirichlet priors in overfitting mixtures --
-- 10.3.2.
-- The meaning of K for overfitting mixtures --
-- 10.3.3.
-- The point-process representation of overfitting mixtures --
-- 10.3.4.
-- Examples --
-- 10.4.
-- Overfitting heterogeneity of component-specific parameters --
-- 10.4.1.
-- Overfitting heterogeneity --
-- 10.4.2.
-- Using shrinkage priors on the component-specific location parameters --
-- 10.5.
-- Concluding remarks --
-- References --
-- 11.
-- Exact Bayesian analysis of mixtures /
-- Kerrie L. Mengersen.
-- 11.1.
-- Introduction --
-- 11.2.
-- Formal derivation of the posterior distribution --
-- 11.2.1.
-- Locally conjugate priors --
-- 11.2.2.
-- True posterior distributions --
-- 11.2.3.
-- Poisson mixture --
-- 11.2.4.
-- Multinomial mixtures --
-- 11.2.5.
-- Normal mixtures --
-- References --
-- 12.
-- Manifold MCMC for mixtures /
-- Mark Girolami --
-- 12.1.
-- Introduction --
-- 12.2.
-- Markov chain Monte Carlo Methods --
-- 12.2.1.
-- Metropolis-Hastings --
-- 12.2.2.
-- Gibbs sampling --
-- 12.2.3.
-- Manifold Metropolis adjusted Langevin algorithm --
-- 12.2.4.
-- Manifold Hamiltonian Monte Carlo --
-- 12.3.
-- Finite Gaussian mixture models --
-- 12.3.1.
-- Gibbs sampler for mixtures of univariate Gaussians --
-- 12.3.2.
-- Manifold MCMC for mixtures of univariate Gaussians --
-- 12.3.3.
-- Metric tensor --
-- 12.3.4.
-- An illustrative example --
-- 12.4.
-- Experiments --
-- 12.5.
-- Discussion --
-- Acknowledgements --
-- Appendix --
-- References --
-- 13.
-- How many components in a finite mixture? /
-- Murray Aitkin --
-- 13.1.
-- Introduction --
-- 13.2.
-- The galaxy data --
-- 13.3.
-- The normal mixture model.
-- 13.4.
-- Bayesian analyses --
-- 13.4.1.
-- Escobar and West --
-- 13.4.2.
-- Phillips and Smith --
-- 13.4.3.
-- Roeder and Wasserman --
-- 13.4.4.
-- Richardson and Green --
-- 13.4.5.
-- Stephens --
-- 13.5.
-- Posterior distributions for K (for flat prior) --
-- 13.6.
-- Conclusions from the Bayesian analyses --
-- 13.7.
-- Posterior distributions of the model deviances --
-- 13.8.
-- Asymptotic distributions --
-- 13.9.
-- Posterior deviances for the galaxy data --
-- 13.10.
-- Conclusions --
-- References --
-- 14.
-- Bayesian mixture models: a blood-free dissection of a sheep /
-- Graham E. Gardner --
-- 14.1.
-- Introduction --
-- 14.2.
-- Mixture models --
-- 14.2.1.
-- Hierarchical normal mixture --
-- 14.3.
-- Altering dimensions of the mixture model --
-- 14.4.
-- Bayesian mixture model incorporating spatial information --
-- 14.4.1.
-- Results --
-- 14.5.
-- Volume calculation --
-- 14.6.
-- Discussion --
-- References.
588 0# -
-- Print version record.
520 ## -
-- This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subje.
-- Probability & Statistics
-- General.
-- bisacsh
-- fast
-- (OCoLC)fst01024154
655 #4 -
-- Electronic books.
-- 1961-
776 08 -
-- Print version:
-- Mixtures.
-- Hoboken, N.J. : Wiley, 2011
-- 9781119993896
-- (DLC) 2010053469
-- (OCoLC)698450396
830 #0 -
-- Wiley series in probability and statistics.
856 40 -
-- Wiley Online Library
994 ## -
-- 92
-- DG1
Holdings
Withdrawn status Lost status Damaged status Home library Current library Date acquired Total Checkouts Barcode Date last seen Koha item type
      Mysore University Main Library Mysore University Main Library 09/07/2020   EBJW1129 09/07/2020 Ebooks

No. of hits (from 9th Mar 12) :

Powered by Koha