MARC details
000 -LEADER |
fixed length control field |
12350cam a2200781Ia 4500 |
001 - |
control field |
ocn759530314 |
003 - |
control field |
OCoLC |
005 - |
control field |
20200709140102.0 |
006 - |
fixed length control field |
m o d |
007 - |
fixed length control field |
cr cn||||||||| |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
111103s2011 njua ob 001 0 eng d |
040 ## - |
-- |
UIU |
-- |
eng |
-- |
pn |
-- |
UIU |
-- |
YDXCP |
-- |
WAU |
-- |
CDX |
-- |
COO |
-- |
OCLCF |
-- |
EBLCP |
-- |
N$T |
-- |
DEBSZ |
-- |
AU@ |
-- |
OHS |
-- |
E7B |
-- |
IDEBK |
-- |
REDDC |
-- |
CHVBK |
-- |
OCLCQ |
-- |
DG1 |
019 ## - |
-- |
742798716 |
-- |
794326191 |
-- |
808669906 |
-- |
816882892 |
-- |
880752033 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119995678 |
Qualifying information |
(electronic bk.) |
|
International Standard Book Number |
1119995671 |
Qualifying information |
(electronic bk.) |
|
International Standard Book Number |
9781119995685 |
Qualifying information |
(electronic bk.) |
|
International Standard Book Number |
111999568X |
Qualifying information |
(electronic bk.) |
|
-- |
9781119993896 |
Qualifying information |
(cloth) |
|
-- |
111999389X |
Qualifying information |
(cloth) |
024 8# - |
-- |
9786613405593 |
029 1# - |
-- |
AU@ |
-- |
000050012976 |
|
-- |
AU@ |
-- |
000052898899 |
|
-- |
CHNEW |
-- |
000613817 |
|
-- |
DEBBG |
-- |
BV043393664 |
|
-- |
DEBSZ |
-- |
372696066 |
|
-- |
DEBSZ |
-- |
396994733 |
|
-- |
DEBSZ |
-- |
425883728 |
|
-- |
DEBSZ |
-- |
430990596 |
|
-- |
DEBSZ |
-- |
44924119X |
|
-- |
NZ1 |
-- |
13751537 |
|
-- |
NZ1 |
-- |
15341321 |
035 ## - |
-- |
(OCoLC)759530314 |
-- |
(OCoLC)742798716 |
-- |
(OCoLC)794326191 |
-- |
(OCoLC)808669906 |
-- |
(OCoLC)816882892 |
-- |
(OCoLC)880752033 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
-- |
QA273.6 |
-- |
.M59 2011 |
072 #7 - |
-- |
MAT |
-- |
029000 |
-- |
bisacsh |
082 04 - |
Classification number |
519.2/4 |
-- |
22 |
049 ## - |
-- |
MAIN |
245 00 - TITLE STATEMENT |
Title |
Mixtures : |
Remainder of title |
estimation and applications / |
Statement of responsibility, etc |
edited by Kerrie L. Mengersen, Christian P. Robert, D. Michael Titterington. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
1 online resource (xviii, 311 pages) : |
Other physical details |
illustrations. |
650 #0 - |
Topical term or geographic name as entry element |
Mixture distributions (Probability theory) |
|
Topical term or geographic name as entry element |
Mixture distributions (Probability theory) |
|
Topical term or geographic name as entry element |
MATHEMATICS |
|
Topical term or geographic name as entry element |
Mixture distributions (Probability theory) |
700 1# - |
Personal name |
Mengersen, Kerrie L. |
|
Personal name |
Robert, Christian P., |
|
Personal name |
Titterington, D. M. |
856 40 - |
Uniform Resource Identifier |
https://doi.org/10.1002/9781119995678 |
264 #1 - |
-- |
Hoboken, N.J. : |
-- |
Wiley, |
-- |
2011. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
490 1# - |
-- |
Wiley series in probability and statistics |
504 ## - |
-- |
Includes bibliographical references and index. |
505 00 - |
-- |
Machine generated contents note: |
-- |
1. |
-- |
The EM algorithm, variational approximations and expectation propagation for mixtures / |
-- |
D. Michael Titterington -- |
-- |
1.1. |
-- |
Preamble -- |
-- |
1.2. |
-- |
The EM algorithm -- |
-- |
1.2.1. |
-- |
Introduction to the algorithm -- |
-- |
1.2.2. |
-- |
The E-step and the M-step for the mixing weights -- |
-- |
1.2.3. |
-- |
The M-step for mixtures of univariate Gaussian distributions -- |
-- |
1.2.4. |
-- |
M-step for mixtures of regular exponential family distributions formulated in terms of the natural parameters -- |
-- |
1.2.5. |
-- |
Application to other mixtures -- |
-- |
1.2.6. |
-- |
EM as a double expectation -- |
-- |
1.3. |
-- |
Variational approximations -- |
-- |
1.3.1. |
-- |
Preamble -- |
-- |
1.3.2. |
-- |
Introduction to variational approximations -- |
-- |
1.3.3. |
-- |
Application of variational Bayes to mixture problems -- |
-- |
1.3.4. |
-- |
Application to other mixture problems -- |
-- |
1.3.5. |
-- |
Recursive variational approximations -- |
-- |
1.3.6. |
-- |
Asymptotic results -- |
-- |
1.4. |
-- |
Expectation-propagation -- |
-- |
1.4.1. |
-- |
Introduction -- |
-- |
1.4.2. |
-- |
Overview of the recursive approach to be adopted. |
|
-- |
1.4.3. |
-- |
Finite Gaussian mixtures with an unknown mean parameter -- |
-- |
1.4.4. |
-- |
Mixture of two known distributions -- |
-- |
1.4.5. |
-- |
Discussion -- |
-- |
Acknowledgements -- |
-- |
References -- |
-- |
2. |
-- |
Online expectation maximisation / |
-- |
Olivier Cappe -- |
-- |
2.1. |
-- |
Introduction -- |
-- |
2.2. |
-- |
Model and assumptions -- |
-- |
2.3. |
-- |
The EM algorithm and the limiting EM recursion -- |
-- |
2.3.1. |
-- |
The batch EM algorithm -- |
-- |
2.3.2. |
-- |
The limiting EM recursion -- |
-- |
2.3.3. |
-- |
Limitations of batch EM for long data records -- |
-- |
2.4. |
-- |
Online expectation maximisation -- |
-- |
2.4.1. |
-- |
The algorithm -- |
-- |
2.4.2. |
-- |
Convergence properties -- |
-- |
2.4.3. |
-- |
Application to finite mixtures -- |
-- |
2.4.4. |
-- |
Use for batch maximum-likelihood estimation -- |
-- |
2.5. |
-- |
Discussion -- |
-- |
References -- |
-- |
3. |
-- |
The limiting distribution of the EM test of the order of a finite mixture / |
-- |
Pengfei Li -- |
-- |
3.1. |
-- |
Introduction -- |
-- |
3.2. |
-- |
The method and theory of the EM test -- |
-- |
3.2.1. |
-- |
The definition of the EM test statistic -- |
-- |
3.2.2. |
-- |
The limiting distribution of the EM test statistic -- |
-- |
3.3. |
-- |
Proofs. |
|
-- |
3.4. |
-- |
Discussion -- |
-- |
References -- |
-- |
4. |
-- |
Comparing Wald and likelihood regions applied to locally identifiable mixture models / |
-- |
Bruce G. Lindsay -- |
-- |
4.1. |
-- |
Introduction -- |
-- |
4.2. |
-- |
Background on likelihood confidence regions -- |
-- |
4.2.1. |
-- |
Likelihood regions -- |
-- |
4.2.2. |
-- |
Profile likelihood regions -- |
-- |
4.2.3. |
-- |
Alternative methods -- |
-- |
4.3. |
-- |
Background on simulation and visualisation of the likelihood regions -- |
-- |
4.3.1. |
-- |
Modal simulation method -- |
-- |
4.3.2. |
-- |
Illustrative example -- |
-- |
4.4. |
-- |
Comparison between the likelihood regions and the Wald regions -- |
-- |
4.4.1. |
-- |
Volume/volume error of the confidence regions -- |
-- |
4.4.2. |
-- |
Differences in univariate intervals via worst case analysis -- |
-- |
4.4.3. |
-- |
Illustrative example (revisited) -- |
-- |
4.5. |
-- |
Application to a finite mixture model -- |
-- |
4.5.1. |
-- |
Nonidentifiabilities and likelihood regions for the mixture parameters -- |
-- |
4.5.2. |
-- |
Mixture likelihood region simulation and visualisation -- |
-- |
4.5.3. |
-- |
Adequacy of using the Wald confidence region. |
|
-- |
4.6. |
-- |
Data analysis -- |
-- |
4.7. |
-- |
Discussion -- |
-- |
References -- |
-- |
5. |
-- |
Mixture of experts modelling with social science applications / |
-- |
Thomas Brendan Murphy -- |
-- |
5.1. |
-- |
Introduction -- |
-- |
5.2. |
-- |
Motivating examples -- |
-- |
5.2.1. |
-- |
Voting blocs -- |
-- |
5.2.2. |
-- |
Social and organisational structure -- |
-- |
5.3. |
-- |
Mixture models -- |
-- |
5.4. |
-- |
Mixture of experts models -- |
-- |
5.5. |
-- |
A mixture of experts model for ranked preference data -- |
-- |
5.5.1. |
-- |
Examining the clustering structure -- |
-- |
5.6. |
-- |
A mixture of experts latent position cluster model -- |
-- |
5.7. |
-- |
Discussion -- |
-- |
Acknowledgements -- |
-- |
References -- |
-- |
6. |
-- |
Modelling conditional densities using finite smooth mixtures / |
-- |
Robert Kohn -- |
-- |
6.1. |
-- |
Introduction -- |
-- |
6.2. |
-- |
The model and prior -- |
-- |
6.2.1. |
-- |
Smooth mixtures -- |
-- |
6.2.2. |
-- |
The component models -- |
-- |
6.2.3. |
-- |
The prior -- |
-- |
6.3. |
-- |
Inference methodology -- |
-- |
6.3.1. |
-- |
The general MCMC scheme -- |
-- |
6.3.2. |
-- |
Updating & beta; and I using variable-dimension finite-step Newton proposals -- |
-- |
6.3.3. |
-- |
Model comparison -- |
-- |
6.4. |
-- |
Applications -- |
-- |
6.4.1. |
-- |
A small simulation study. |
|
-- |
6.4.2. |
-- |
LIDAR data -- |
-- |
6.4.3. |
-- |
Electricity expenditure data -- |
-- |
6.5. |
-- |
Conclusions -- |
-- |
Acknowledgements -- |
-- |
Appendix: Implementation details for the gamma and log-normal models -- |
-- |
References -- |
-- |
7. |
-- |
Nonparametric mixed membership modelling using the IBP compound Dirichlet process / |
-- |
David M. Blei -- |
-- |
7.1. |
-- |
Introduction -- |
-- |
7.2. |
-- |
Mixed membership models -- |
-- |
7.2.1. |
-- |
Latent Dirichlet allocation -- |
-- |
7.2.2. |
-- |
Nonparametric mixed membership models -- |
-- |
7.3. |
-- |
Motivation -- |
-- |
7.4. |
-- |
Decorrelating prevalence and proportion -- |
-- |
7.4.1. |
-- |
Indian buffet process -- |
-- |
7.4.2. |
-- |
The IBP compound Dirichlet process -- |
-- |
7.4.3. |
-- |
An application of the ICD: focused topic models -- |
-- |
7.4.4. |
-- |
Inference -- |
-- |
7.5. |
-- |
Related models -- |
-- |
7.6. |
-- |
Empirical studies -- |
-- |
7.7. |
-- |
Discussion -- |
-- |
References -- |
-- |
8. |
-- |
Discovering nonbinary hierarchical structures with Bayesian rose trees / |
-- |
Katherine A. Heller -- |
-- |
8.1. |
-- |
Introduction -- |
-- |
8.2. |
-- |
Prior work -- |
-- |
8.3. |
-- |
Rose trees, partitions and mixtures -- |
-- |
8.4. |
-- |
Avoiding needless cascades -- |
-- |
8.4.1. |
-- |
Cluster models. |
|
-- |
8.5. |
-- |
Greedy construction of Bayesian rose tree mixtures -- |
-- |
8.5.1. |
-- |
Prediction -- |
-- |
8.5.2. |
-- |
Hyperparameter optimisation -- |
-- |
8.6. |
-- |
Bayesian hierarchical clustering, Dirichlet process models and product partition models -- |
-- |
8.6.1. |
-- |
Mixture models and product partition models -- |
-- |
8.6.2. |
-- |
PCluster and Bayesian hierarchical clustering -- |
-- |
8.7. |
-- |
Results -- |
-- |
8.7.1. |
-- |
Optimality of tree structure -- |
-- |
8.7.2. |
-- |
Hierarchy likelihoods -- |
-- |
8.7.3. |
-- |
Partially observed data -- |
-- |
8.7.4. |
-- |
Psychological hierarchies -- |
-- |
8.7.5. |
-- |
Hierarchies of Gaussian process experts -- |
-- |
8.8. |
-- |
Discussion -- |
-- |
References -- |
-- |
9. |
-- |
Mixtures of factor analysers for the analysis of high-dimensional data / |
-- |
Suren I. Rathnayake -- |
-- |
9.1. |
-- |
Introduction -- |
-- |
9.2. |
-- |
Single-factor analysis model -- |
-- |
9.3. |
-- |
Mixtures of factor analysers -- |
-- |
9.4. |
-- |
Mixtures of common factor analysers (MCFA) -- |
-- |
9.5. |
-- |
Some related approaches -- |
-- |
9.6. |
-- |
Fitting of factor-analytic models -- |
-- |
9.7. |
-- |
Choice of the number of factors q -- |
-- |
9.8. |
-- |
Example -- |
-- |
9.9. |
-- |
Low-dimensional plots via MCFA approach. |
|
-- |
9.10. |
-- |
Multivariate t-factor analysers -- |
-- |
9.11. |
-- |
Discussion -- |
-- |
Appendix -- |
-- |
References -- |
-- |
10. |
-- |
Dealing with label switching under model uncertainty / |
-- |
Sylvia Fruhwirth-Schnatter -- |
-- |
10.1. |
-- |
Introduction -- |
-- |
10.2. |
-- |
Labelling through clustering in the point-process representation -- |
-- |
10.2.1. |
-- |
The point-process representation of a finite mixture model -- |
-- |
10.2.2. |
-- |
Identification through clustering in the point-process representation -- |
-- |
10.3. |
-- |
Identifying mixtures when the number of components is unknown -- |
-- |
10.3.1. |
-- |
The role of Dirichlet priors in overfitting mixtures -- |
-- |
10.3.2. |
-- |
The meaning of K for overfitting mixtures -- |
-- |
10.3.3. |
-- |
The point-process representation of overfitting mixtures -- |
-- |
10.3.4. |
-- |
Examples -- |
-- |
10.4. |
-- |
Overfitting heterogeneity of component-specific parameters -- |
-- |
10.4.1. |
-- |
Overfitting heterogeneity -- |
-- |
10.4.2. |
-- |
Using shrinkage priors on the component-specific location parameters -- |
-- |
10.5. |
-- |
Concluding remarks -- |
-- |
References -- |
-- |
11. |
-- |
Exact Bayesian analysis of mixtures / |
-- |
Kerrie L. Mengersen. |
|
-- |
11.1. |
-- |
Introduction -- |
-- |
11.2. |
-- |
Formal derivation of the posterior distribution -- |
-- |
11.2.1. |
-- |
Locally conjugate priors -- |
-- |
11.2.2. |
-- |
True posterior distributions -- |
-- |
11.2.3. |
-- |
Poisson mixture -- |
-- |
11.2.4. |
-- |
Multinomial mixtures -- |
-- |
11.2.5. |
-- |
Normal mixtures -- |
-- |
References -- |
-- |
12. |
-- |
Manifold MCMC for mixtures / |
-- |
Mark Girolami -- |
-- |
12.1. |
-- |
Introduction -- |
-- |
12.2. |
-- |
Markov chain Monte Carlo Methods -- |
-- |
12.2.1. |
-- |
Metropolis-Hastings -- |
-- |
12.2.2. |
-- |
Gibbs sampling -- |
-- |
12.2.3. |
-- |
Manifold Metropolis adjusted Langevin algorithm -- |
-- |
12.2.4. |
-- |
Manifold Hamiltonian Monte Carlo -- |
-- |
12.3. |
-- |
Finite Gaussian mixture models -- |
-- |
12.3.1. |
-- |
Gibbs sampler for mixtures of univariate Gaussians -- |
-- |
12.3.2. |
-- |
Manifold MCMC for mixtures of univariate Gaussians -- |
-- |
12.3.3. |
-- |
Metric tensor -- |
-- |
12.3.4. |
-- |
An illustrative example -- |
-- |
12.4. |
-- |
Experiments -- |
-- |
12.5. |
-- |
Discussion -- |
-- |
Acknowledgements -- |
-- |
Appendix -- |
-- |
References -- |
-- |
13. |
-- |
How many components in a finite mixture? / |
-- |
Murray Aitkin -- |
-- |
13.1. |
-- |
Introduction -- |
-- |
13.2. |
-- |
The galaxy data -- |
-- |
13.3. |
-- |
The normal mixture model. |
|
-- |
13.4. |
-- |
Bayesian analyses -- |
-- |
13.4.1. |
-- |
Escobar and West -- |
-- |
13.4.2. |
-- |
Phillips and Smith -- |
-- |
13.4.3. |
-- |
Roeder and Wasserman -- |
-- |
13.4.4. |
-- |
Richardson and Green -- |
-- |
13.4.5. |
-- |
Stephens -- |
-- |
13.5. |
-- |
Posterior distributions for K (for flat prior) -- |
-- |
13.6. |
-- |
Conclusions from the Bayesian analyses -- |
-- |
13.7. |
-- |
Posterior distributions of the model deviances -- |
-- |
13.8. |
-- |
Asymptotic distributions -- |
-- |
13.9. |
-- |
Posterior deviances for the galaxy data -- |
-- |
13.10. |
-- |
Conclusions -- |
-- |
References -- |
-- |
14. |
-- |
Bayesian mixture models: a blood-free dissection of a sheep / |
-- |
Graham E. Gardner -- |
-- |
14.1. |
-- |
Introduction -- |
-- |
14.2. |
-- |
Mixture models -- |
-- |
14.2.1. |
-- |
Hierarchical normal mixture -- |
-- |
14.3. |
-- |
Altering dimensions of the mixture model -- |
-- |
14.4. |
-- |
Bayesian mixture model incorporating spatial information -- |
-- |
14.4.1. |
-- |
Results -- |
-- |
14.5. |
-- |
Volume calculation -- |
-- |
14.6. |
-- |
Discussion -- |
-- |
References. |
588 0# - |
-- |
Print version record. |
520 ## - |
-- |
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subje. |
|
-- |
Probability & Statistics |
-- |
General. |
-- |
bisacsh |
|
-- |
fast |
-- |
(OCoLC)fst01024154 |
655 #4 - |
-- |
Electronic books. |
|
-- |
1961- |
776 08 - |
-- |
Print version: |
-- |
Mixtures. |
-- |
Hoboken, N.J. : Wiley, 2011 |
-- |
9781119993896 |
-- |
(DLC) 2010053469 |
-- |
(OCoLC)698450396 |
830 #0 - |
-- |
Wiley series in probability and statistics. |
856 40 - |
-- |
Wiley Online Library |
994 ## - |
-- |
92 |
-- |
DG1 |