Wellcome

Software architecture for big data and the cloud / (Record no. 504658)

MARC details
000 -LEADER
fixed length control field 16984cam a2200709Ii 4500
001 -
control field ocn990046465
003 -
control field OCoLC
005 -
control field 20190719103522.0
006 -
fixed length control field m o d
007 -
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170614s2017 mau ob 001 0 eng d
040 ## -
-- N$T
-- eng
-- rda
-- pn
-- N$T
-- N$T
-- YDX
-- OPELS
-- UMI
-- IDEBK
-- OCLCF
-- STF
-- MERER
-- TOH
-- OCLCQ
-- UPM
-- OCLCQ
-- COO
-- SNM
-- NAM
-- D6H
-- UAB
-- U3W
-- OCLCQ
-- CEF
-- KSU
-- OCLCQ
-- OTZ
-- UOK
-- WYU
-- CQ$
019 ## -
-- 990315498
-- 991574708
-- 992170645
-- 1028668358
-- 1066497836
-- 1066506503
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128093382
Qualifying information (electronic bk.)
International Standard Book Number 0128093382
Qualifying information (electronic bk.)
-- 9780128054673
-- 0128054670
035 ## -
-- (OCoLC)990046465
-- (OCoLC)990315498
-- (OCoLC)991574708
-- (OCoLC)992170645
-- (OCoLC)1028668358
-- (OCoLC)1066497836
-- (OCoLC)1066506503
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
-- QA76.758
-- .S64 2017eb
072 #7 -
-- COM
-- 051230
-- bisacsh
082 04 -
Classification number 005.1/2
-- 23
245 00 - TITLE STATEMENT
Title Software architecture for big data and the cloud /
Statement of responsibility, etc edited by Ivan Mistrik [and 4 others].
250 ## - EDITION STATEMENT
Edition statement First edition.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xxxviii, 432 pages)
505 0# -
Formatted contents note Machine generated contents note: ch. 1 Introduction. Software Architecture for Cloud and Big Data: An Open Quest for the Architecturally Significant Requirements / Ivan Mistrik -- 1.1.A Perspective into Software Architecture for Cloud and Big Data -- 1.2.Cloud Architecturally Significant Requirements and Their Design Implications -- 1.2.1.Dynamism and Elasticity as Cloud Architecturally Significant Requirements -- 1.2.2.Multitenancy as Cloud Architecturally Significant Requirement -- 1.2.3.Service Level Agreements (SLAs) Constraints as Cloud Architecturally Significant Requirement -- 1.2.4.Cloud Marketplaces as Architecturally Significant Requirement -- 1.2.5.Seeking Value as Cloud Architecturally Significant Requirement -- 1.3.Big Data Management as Cloud Architecturally Significant Requirement -- 1.3.1.Big Data Analytics Enabled by the Cloud and Its Architecturally Significant Requirements
Formatted contents note Note continued: 1.3.2.Architecturally Significant Requirements in Realm of Competing Big Data Technologies -- References -- pt. 1 CONCEPTS AND MODELS -- ch. 2 Hyperscalability -- The Changing Face of Software Architecture / Ian Gorton -- 2.1.Introduction -- 2.2.Hyperscalable Systems -- 2.2.1.Scalability -- 2.2.2.Scalability Limits -- 2.2.3.Scalability Costs -- 2.2.4.Hyperscalability -- 2.3.Principles of Hyperscalable Systems -- 2.3.1.Automate and Optimize to Control Costs -- 2.3.2.Simple Solutions Promote Scalability -- 2.3.3.Utilize Stateless Services -- 2.3.4.Observability is Fundamental to Success at Hyperscale -- 2.4.Related Work -- 2.5.Conclusions -- References -- ch. 3 Architecting to Deliver Value From a Big Data and Hybrid Cloud Architecture / Tim Vincent -- 3.1.Introduction -- 3.2.Supporting the Analytics Lifecycle -- 3.3.The Role of Data Lakes -- 3.4.Key Design Features That Make a Data Lake Successful
Formatted contents note Note continued: 3.5.Architecture Example -- Context Management in the IoT -- 3.6.Big Data Origins and Characteristics -- 3.7.The Systems That Capture and Process Big Data -- 3.8.Operating Across Organizational Silos -- 3.9.Architecture Example -- Local Processing of Big Data -- 3.10.Architecture Example -- Creating a Multichannel View -- 3.11.Application Independent Data -- 3.12.Metadata and Governance -- 3.13.Conclusions -- 3.14.Outlook and Future Directions -- References -- ch. 4 Domain-Driven Design of Big Data Systems Based on a Reference Architecture / Ioannis N. Athanasiadis -- 4.1.Introduction -- 4.2.Domain-Driven Design Approach -- 4.3.Related Work -- 4.4.Feature Model of Big Data Systems -- 4.4.1.Data -- 4.4.2.Information Management -- 4.4.3.Interface and Visualization -- 4.4.4.Data Processing -- 4.4.5.Data Storage -- 4.4.6.Data Analysis -- 4.4.7.Feature Constraints -- 4.5.Deriving the Application Architectures and Example -- 4.5.1.Feature Modeling
Formatted contents note Note continued: 4.5.2.Design Rule Modeling -- 4.5.3.Associating Design Decisions With Features -- 4.5.4.Generation of the Application Architecture and the Deployment Diagram -- 4.5.5.Deriving Big Data Architectures of Existing Systems -- 4.6.Conclusion -- References -- ch. 5 An Architectural Model-Based Approach to Quality-Aware DevOps in Cloud Applications / Ralf Reussner -- 5.1.Introduction -- 5.2.A Cloud-Based Software Application -- 5.3.Differences in Architectural Models Among Development and Operations -- 5.4.The iObserve Approach -- 5.5.Addressing the Differences in Architectural Models -- 5.5.1.The iObserve Megamodel -- 5.5.2.Descriptive and Prescriptive Architectural Models in iObserve -- 5.5.3.Static and Dynamic Content in Architectural Models -- 5.6.Applying iObserve to CoCoME -- 5.6.1.Applying the iObserve Megamodel -- 5.6.2.Applying Descriptive and Prescriptive Architectural Models -- 5.6.3.Applying Live Visualization -- 5.7.Limitations
Formatted contents note Note continued: 5.8.Related Work -- 5.9.Conclusion -- References -- ch. 6 Bridging Ecology and Cloud: Transposing Ecological Perspective to Enable Better Cloud Autoscaling / Rami Bahsoon -- 6.1.Introduction -- 6.2.Motivation -- 6.3.Natural Ecosystem -- 6.4.Transposing Ecological Principles, Theories and Models to Cloud Ecosystem -- 6.5.Ecology-Inspired Self-Aware Pattern -- 6.6.Opportunities and Challenges -- 6.7.Related Work -- 6.8.Conclusion -- References -- Acknowledgement -- pt. 2 ANALYZING AND EVALUATING -- ch. 7 Evaluating Web PKIs / Mark Ryan -- 7.1.Introduction -- 7.2.An Overview of PKI -- 7.3.Desired Features and Security Concerns -- 7.4.Existing Proposals -- 7.4.1.Classic -- 7.4.2.Difference Observation -- 7.4.3.Scope Restriction -- 7.4.4.Certificate Management Transparency -- 7.5.Observations -- 7.5.1.Property Perspective -- 7.5.2.System Perspective -- 7.6.Conclusion -- References
Formatted contents note Note continued: ch. 8 Performance Isolation in Cloud-Based Big Data Architectures / Alp Oral -- 8.1.Introduction -- 8.2.Background -- 8.2.1.Cloud Computing -- 8.2.2.Big Data Architecture -- 8.3.Case Study and Problem Statement -- 8.3.1.Case Study -- 8.3.2.Problem Statement -- 8.4.Performance Monitoring in Cloud-Based Systems -- 8.5.Application Framework for Performance Isolation -- 8.6.Evaluation of the Framework -- 8.6.1.Evaluation Results -- 8.7.Discussion -- 8.8.Related Work -- 8.9.Conclusion -- References -- ch. 9 From Legacy to Cloud: Risks and Benefits in Software Cloud Migration / Patricia Lago -- 9.1.Introduction -- 9.2.Research Method -- 9.2.1.Pilot Study -- 9.2.2.Search Strategy -- 9.2.3.Data Extraction -- 9.2.4.Data Analysis Method -- 9.3.Results -- 9.3.1.Overview of Primary Studies and Quality Evaluation -- 9.3.2.Benefits and Risks -- 9.3.3.General Measures -- 9.3.4.Models and Frameworks for Cloud Migration -- 9.4.Discussion
Formatted contents note Note continued: 9.4.1.Findings and Lessons Learned -- 9.4.2.Threats to Validity -- 9.5.Conclusion -- References -- ch. 10 Big Data: A Practitioners Perspective / Fiona O'Sullivan -- 10.1.Big Data Is a New Paradigm -- Differences With Traditional Data Warehouse, Pitfalls and Consideration -- 10.1.1.Differences With Traditional Data Warehouse -- 10.1.2.Pitfalls -- 10.1.3.Considerations -- 10.2.Product Considerations for Big Data -- Use of Open Source Products for Big Data, Pitfalls and Considerations -- 10.2.1.The Use of Open Source Product for Big Data -- 10.2.2.Pitfalls -- 10.2.3.Considerations -- 10.3.Use of Cloud for hosting Big Data -- Why to Use Cloud, Pitfalls and Consideration -- 10.3.1.Why to Use Cloud? -- 10.3.2.Pitfalls -- 10.3.3.Consideration -- 10.4.Big Data Implementation -- Architecture Definition, Processing Framework and Migration Pattern From Data Warehouse to Big Data -- 10.4.1.Patterns for Transitioning From Data Warehouse to Big Data
Formatted contents note Note continued: 10.5.Conclusion -- References -- pt. 3 TECHNOLOGIES -- ch. 11 A Taxonomy and Survey of Stream Processing Systems / Rajkumar Buyya -- 11.1.Introduction -- 11.2.Stream Processing Platforms: A Brief Background -- 11.2.1.Requirements of Stream Processing Platforms/Engines -- 11.2.2.Generic Model of Modern Stream Processing Platforms/Engines -- 11.3.Taxonomy -- 11.3.1.Functional Aspects -- 11.3.2.Nonfunctional Aspects -- 11.4.A Survey of Stream Processing Platforms -- 11.4.1.Data Stream Management Systems -- 11.4.2.Complex Event Processing Systems -- 11.4.3.Stream Processing Platforms/Engines -- 11.5.Comparison Study of the Stream Processing Platforms -- 11.5.1.Scalability -- 11.5.2.Messaging & Distribution -- 11.5.3.Data Processing/Stream Processors -- 11.5.4.Fault Tolerance -- 11.6.Conclusions and Future Directions -- References -- ch. 12 Architecting Cloud Services for the Digital Me in a Privacy-Aware Environment / Andreas Wortmann -- 12.1.Introduction
Formatted contents note Note continued: 12.2.Example -- 12.3.Challenges -- 12.3.1.Service Composition -- 12.3.2.Technology Abstraction -- 12.3.3.Service and Data Integration -- 12.3.4.Trusted Use of Personal Data -- 12.4.Preliminaries -- 12.5.System-of-Systems Approach -- 12.5.1.Persistence Service -- 12.5.2.DataConversion Service -- 12.5.3.Privacy Service -- 12.5.4.LookUp Service -- 12.5.5.PersonalData Service -- 12.6.Generative Approach -- 12.7.Related Work -- 12.7.1.Service Composition -- 12.7.2.Technology Abstraction -- 12.7.3.Service and Data Integration -- 12.7.4.Trusted Use of Personal Data -- 12.8.Discussion -- 12.9.Conclusion -- References -- ch. 13 Reengineering Data-Centric Information Systems for the Cloud -- A Method and Architectural Patterns Promoting Multitenancy / Olaf Zimmermann -- 13.1.Introduction -- 13.2.Context and Problem: Multitenancy in Cloud Computing -- 13.3.Solution Overview: Reengineering Method and Process
Formatted contents note Note continued: 13.4.Solution Detail 1: Architectural Patterns in the Method -- 13.4.1.Architectural Reengineering Steps for the Cloud (Architectural Refactoring) -- 13.4.2.Multitenancy Requirements and Patterns for Cloud Environments -- 13.4.3.The Multitenancy Capable Model -- 13.4.4.The Multitenancy Capable Controller -- 13.4.5.The Multitenancy Capable View -- 13.5.Solution Detail 2: Testing and Code Reviews -- 13.5.1.Testing for Multitenancy Defects -- 13.5.2.Code Review for Multitenancy Defects -- 13.5.3.Summary -- 13.6.Case Study (Implementation) -- 13.6.1.Multitenancy Transformation Without Patterns -- 13.6.2.Multitenancy Transformation With Patterns -- 13.6.3.Comparison -- 13.7.Discussion -- 13.8.Related Work -- 13.9.Summary and Conclusions -- Appendix 13.A Architectural Refactoring (AR) Reference -- References -- ch. 14 Exploring the Evolution of Big Data Technologies / Georgios Theodoropoulos -- 14.1.Introduction -- 14.2.Big Data in Our Daily Lives
Formatted contents note Note continued: 14.3.Data Intensive Computing -- 14.3.1.Big Compute Versus Big Data -- 14.3.2.Data Intensive Applications -- 14.3.3.Data Intensive Frameworks -- 14.3.4.MapReduce and GFS -- 14.4.Apache Hadoop -- 14.4.1.Hadoop VI -- 14.4.2.Hadoop 2.0 -- 14.5.Apache Spark -- 14.5.1.Resilient Distributed Datasets -- 14.5.2.Data Flow and Programming With Spark -- 14.5.3.Spark Processing Engines -- 14.5.4.Hadoop Ecosystem Taxonomy -- 14.6.The Role of Cloud Computing -- 14.7.The Future of Big Data Platforms -- 14.7.1.Big Data Applications -- 14.7.2.Big Data Frameworks and Hardware -- 14.7.3.Big Data on the Road to Exascale -- 14.8.Conclusion -- References -- ch. 15 A Taxonomy and Survey of Fault-Tolerant Workflow Management Systems in Cloud and Distributed Computing Environments / Rajkumar Buyya -- 15.1.Introduction -- 15.2.Background -- 15.2.1.Workflow Management Systems -- 15.2.2.Workflow Scheduling -- 15.3.Introduction to Fault-Tolerance
Formatted contents note Note continued: 15.3.1.Necessity for Fault-Tolerance in Distributed Systems -- 15.4.Taxonomy of Faults -- 15.5.Taxonomy of Fault-Tolerant Scheduling Algorithms -- 15.5.1.Replication -- 15.5.2.Resubmission -- 15.5.3.Checkpointing -- 15.5.4.Provenance -- 15.5.5.Rescue Workflow -- 15.5.6.User-Defined Exception Handling -- 15.5.7.Alternate Task -- 15.5.8.Failure Masking -- 15.5.9.Slack Time -- 15.5.10.Trust-Based Scheduling Algorithms -- 15.6.Modeling of Failures in Workflow Management Systems -- 15.7.Metrics Used to Quantify Fault-Tolerance -- 15.8.Survey of Workflow Management Systems and Frameworks -- 15.8.1.Askalon -- 15.8.2.Pegasus -- 15.8.3.Triana -- 15.8.4.UNICORE 6 -- 15.8.5.Kepler -- 15.8.6.Cloudbus Workflow Management System -- 15.8.7.Traverna -- 15.8.8.The e-Science Central (e-SC) -- 15.8.9.SwinDeW-C -- 15.8.10.Big Data Workflow Frameworks: MapReduce, Hadoop, and Spark -- 15.8.11.Other Workflow Management Systems -- 15.9.Tools and Support Systems
Formatted contents note Note continued: 15.9.1.Data Management Tools -- 15.9.2.Security and Fault-Tolerance Management Tools -- 15.9.3.Cloud Development Tools -- 15.9.4.Support Systems -- 15.10.Summary -- References -- pt. 4 RESOURCE MANAGEMENT -- ch. 16 The HARNESS Platform: A Hardware- and Network-Enhanced Software System for Cloud Computing / Alexander Wolf -- 16.1.Introduction -- 16.2.Related Work -- 16.3.Overview -- 16.4.Managing Heterogeneity -- 16.4.1.Hierarchical Resource Management -- 16.4.2.Agnostic Resource Management -- 16.4.3.Ranking Allocation Requests -- 16.4.4.HARNESS API -- 16.5.Prototype Description -- 16.5.1.The Platform Layer -- 16.5.2.The Infrastructure Layer -- 16.5.3.The Virtual Execution Layer -- 16.6.Evaluation -- 16.6.1.Executing HPC Applications on the Cloud -- 16.6.2.Resource Scheduling with Network Constraints -- 16.7.Conclusion -- Project Resources -- References -- Acknowledgements -- ch. 17 Auditable Version Control Systems in Untrusted Public Clouds / Jun Dai
Formatted contents note Note continued: 17.1.Motivation and Contributions -- 17.2.Background Knowledge -- 17.2.1.Data Organization in Version Control Systems -- 17.2.2.Remote Data Integrity Checking (RDIC) -- 17.3.System and Adversarial Model -- 17.4.Auditable Version Control Systems -- 17.4.1.Definition of AVCS -- 17.4.2.An AVCS Construction -- 17.5.Discussion -- 17.6.Other RDIC Approaches for Version Control Systems -- 17.7.Evaluation -- 17.7.1.Theoretical Evaluation -- 17.7.2.Experimental Evaluation -- 17.8.Conclusion -- References -- ch. 18 Scientific Workflow Management System for Clouds / Rajkumar Buyya -- 18.1.Introduction -- 18.2.Background -- 18.3.Workflow Management Systems for Clouds -- 18.4.Cloudbus Workflow Management System -- 18.5.Cloud-Based Extensions to the Workflow Engine -- 18.6.Performance Evaluation -- 18.6.1.WRPS -- 18.6.2.Montage -- 18.6.3.Setup of Experimental Infrastructure -- 18.6.4.Montage Setup -- 18.6.5.Results -- 18.7.Summary and Conclusions -- References
Formatted contents note Note continued: pt. 5 LOOKING AHEAD -- ch. 19 Outlook and Future Directions / Ivan Mistrik -- 19.1.New or Advanced Applications -- 19.2.Advanced Supporting Technologies -- 19.3.Architecturally Significant Requirements -- 19.4.Challenges for the Architecting Process -- 19.5.Further Reading -- References.
650 #0 -
Topical term or geographic name as entry element Software engineering.
Topical term or geographic name as entry element Software architecture.
Topical term or geographic name as entry element Big data.
Topical term or geographic name as entry element Cloud computing.
Topical term or geographic name as entry element COMPUTERS
Topical term or geographic name as entry element Big data.
Topical term or geographic name as entry element Cloud computing.
Topical term or geographic name as entry element Software architecture.
Topical term or geographic name as entry element Software engineering.
700 1# -
Personal name Mistr�ik, Ivan,
Relator term editor.
856 40 -
Uniform Resource Identifier http://www.sciencedirect.com/science/book/9780128054673
264 #1 -
-- Cambridge, MA :
-- Morgan Kaufmann,
-- [2017]
-- �2017
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
520 ## -
-- Software architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors.
588 0# -
-- Vendor-supplied metadata.
504 ## -
-- Includes bibliographical references and indexes.
-- Software Development & Engineering
-- General.
-- bisacsh
-- fast
-- (OCoLC)fst01892965
-- fast
-- (OCoLC)fst01745899
-- fast
-- (OCoLC)fst01200416
-- fast
-- (OCoLC)fst01124185
655 #4 -
-- Electronic books.
-- Electronic book.
776 08 -
-- Print version:
-- 0128054670
-- 9780128054673
-- (OCoLC)969962983
856 40 -
-- ScienceDirect
Holdings
Withdrawn status Lost status Damaged status Home library Current library Date acquired Total Checkouts Barcode Date last seen Koha item type
      Mysore University Main Library Mysore University Main Library 19/07/2019   EBKELV959 19/07/2019 Ebooks

No. of hits (from 9th Mar 12) :

Powered by Koha