Wellcome

Extended finite element method / (Record no. 504388)

MARC details
000 -LEADER
fixed length control field 08097cam a2200589Ki 4500
001 -
control field ocn967983902
003 -
control field OCoLC
005 -
control field 20190719103421.0
006 -
fixed length control field m o d
007 -
fixed length control field cr cnu---unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170110s2014 ne a ob 001 0 eng d
040 ## -
-- OPELS
-- eng
-- rda
-- pn
-- OPELS
-- FEM
-- UPM
-- OCLCQ
-- TEF
-- OTZ
-- IDEBK
-- MERUC
-- TEF
-- OCLCQ
-- D6H
-- U3W
019 ## -
-- 968038267
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0124078559
Qualifying information (electronic bk.)
International Standard Book Number 9780124078550
Qualifying information (electronic bk.)
-- 9780124077171
-- 012407717X
International Standard Book Number 9780124078567
International Standard Book Number 0124078567
035 ## -
-- (OCoLC)967983902
-- (OCoLC)968038267
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
-- TA347.F5
-- E98 2014eb
082 04 -
Classification number 518/.25
-- 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Zhuang, Zhuo,
245 10 - TITLE STATEMENT
Title Extended finite element method /
Statement of responsibility, etc Zhuo Zhuang, Zhanli Liu, Binbin Cheng, and Jianhui Liao, Tsinghua University, Beijing.
250 ## - EDITION STATEMENT
Edition statement First edition.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (xi, 271 pages) :
Other physical details illustrations.
505 0# -
Formatted contents note Machine generated contents note: 1.1. Significance of Studying Computational Fracture Mechanics -- 1.2. Introduction to X-FEM -- 1.3. Research Status and Development of X-FEM -- 1.3.1. The Development of X-FEM Theory -- 1.3.2. Development of 3D X-FEM -- 1.4.Organization of this Book -- 2.1. Introduction -- 2.2. Two-Dimensional Linear Elastic Fracture Mechanics -- 2.3. Material Fracture Toughness -- 2.4. Fracture Criterion of Linear Elastic Material -- 2.5.Complex Fracture Criterion -- 2.5.1. Maximum Circumference Tension Stress Intensity Factor Theory -- 2.5.2. Minimum Strain Energy Density Stress Intensity Factor Theory -- 2.5.3. Maximum Energy Release Rate Theory -- 2.6. Interaction Integral -- 2.7. Summary -- 3.1. Introduction to Dynamic Fracture Mechanics -- 3.2. Linear Elastic Dynamic Fracture Theory -- 3.2.1. Dynamic Stress Field at Crack Tip Position -- 3.2.2. Dynamic Stress Intensity Factor -- 3.2.3. Dynamic Crack Propagating Condition and Velocity -- 3.3. Crack Driving Force Computation.
Formatted contents note Contents note continued: 3.3.1. Solution Based on Nodal Force Release -- 3.3.2. Solution Based on Energy Balance -- 3.4. Crack Propagation in Steady State -- 3.5. Engineering Applications of Dynamic Fracture Mechanics -- 3.6. Summary -- 4.1.X-FEM Based on the Partition of Unity -- 4.2. Level Set Method -- 4.3. Enriched Shape Function -- 4.3.1. Description of a Strong Discontinuity Surface -- 4.3.2. Description of a Weak Discontinuity Surface -- 4.4. Governing Equation and Weak Form -- 4.5. Integration on Spatial Discontinuity Field -- 4.6. Time Integration and Lumped Mass Matrix -- 4.7. Postprocessing Demonstration -- 4.8. One-Dimensional X-FEM -- 4.8.1. Enriched Displacement -- 4.8.2. Mass Matrix -- 4.9. Summary -- 5.1. Numerical Study and Precision Analysis of X-FEM -- 5.1.1.A Half Static Crack in a Finite Plate -- 5.1.2.A Beam with Stationary Crack under Dynamic Loading -- 5.1.3. Simulation of Complex Crack Propagation -- 5.1.4. Simulation of the Interface.
Formatted contents note Contents note continued: 5.1.5. Interaction Between Crack and Holes -- 5.1.6. Interfacial Crack Growth in Bimaterials -- 5.2. Two-Dimensional High-Order X-FEM -- 5.2.1. Spectral Element-Based X-FEM -- 5.2.2. Mixed-Mode Static Crack -- 5.2.3. Kalthoff's Experiment -- 5.2.4. Mode I Moving Crack -- 5.3. Crack Branching Simulation -- 5.3.1. Crack Branching Enrichment -- 5.3.2. Branch Criteria -- 5.3.3. Numerical Examples -- 5.4. Summary -- 6.1. Introduction -- 6.2. Overview of Plate and Shell Fracture Mechanics -- 6.2.1. Kirchhoff Plate and Shell Bending Fracture Theory -- 6.2.2. Reissner Plate and Shell Bending Fracture Theory -- 6.3. Plate and Shell Theory Applied In Finite Element Analysis -- 6.4. Brief Introduction to General Shell Elements -- 6.4.1. Belytschko-Lin-Tsay Shell Element -- 6.4.2. Continuum-Based Shell Element -- 6.5.X-FEM on CB Shell Elements -- 6.5.1. Shape Function of a Crack Perpendicular to the Mid-Surface -- 6.5.2. Shape Function of a Crack Not Perpendicular to the Mid-Surface.
Formatted contents note Contents note continued: 6.5.3. Total Lagrangian Formulation -- 6.5.4. Time Integration Scheme and Linearization -- 6.5.5. Continuum Element Transformed to Shell -- 6.6. Crack Propagation Criterion -- 6.6.1. Stress Intensity Factor Computation -- 6.6.2. Maximum Energy Release Rate Criterion -- 6.7. Numerical Examples -- 6.7.1. Mode I Central Through-Crack in a Finite Plate -- 6.7.2. Mode III Crack Growth in a Plate -- 6.7.3. Steady Crack in a Bending Pipe -- 6.7.4. Crack Propagation Along a Given Path in a Pipe -- 6.7.5. Arbitrary Crack Growth in a Pipe -- 6.8. Summary -- 7.1. Introduction -- 7.2. Theoretical Solutions of Subinterfacial Fracture -- 7.2.1.Complex Variable Function Solution for Sub- interfacial Cracks -- 7.2.2. Solution Considering the Crack Surface Affected Area -- 7.2.3. Analytical Solution of a Finite Dimension Structure -- 7.3. Simulation of Subinterfacial Cracks Based On X-FEM -- 7.3.1. Experiments on Subinterfacial Crack Growth.
Formatted contents note Contents note continued: 7.3.2.X-FEM Simulation of Subinterfacial Crack Growth -- 7.4. Equilibrium State of Subinterfacial Mode I Cracks -- 7.4.1. Effect on Fracture Mixed Level by Crack Initial Position -- 7.4.2. Effect on Material Inhomogeneity and Load Asymmetry -- 7.5. Effect on Subinterfacial Crack Growth from a Tilted Interface -- 7.6. Summary -- 8.1. Introduction -- 8.2. Level Set Method for Composite Materials -- 8.2.1. Level Set Representation -- 8.2.2. Enrichment Function -- 8.2.3. Lumped Mass Matrix -- 8.3. Microstructure Generation -- 8.4. Material Constitutive Model -- 8.5. Numerical Examples -- 8.5.1. Static Analysis -- 8.5.2. Dynamic Analysis -- 8.6. Summary -- 9.1. Governing Equations and Interfacial Conditions -- 9.2. Interfacial Description of Two-Phase Flows -- 9.3.X-FEM and Unknown Parameters Discretization -- 9.4. Discretization of Governing Equations -- 9.5. Numerical Integral Method -- 9.6. Examples and Analyses -- 9.7. Summary.
Formatted contents note Contents note continued: 10.1. Research on Micro-Scale Crystal Plasticity -- 10.1.1. Discrete Dislocation Plasticity Modeling -- 10.1.2.X-FEM Simulation of Dislocations -- 10.2. Application of Multi-Scale Simulation -- 10.3. Modeling of Deformation Localization -- 10.4. Summary.
650 #0 -
Topical term or geographic name as entry element Finite element method.
Topical term or geographic name as entry element Finite element method.
700 1# -
Personal name Liu, Zhanli,
Relator term author.
Personal name Cheng, Binbin,
Relator term author.
Personal name Liao, Jianhui,
Relator term author.
856 40 -
Uniform Resource Identifier http://www.sciencedirect.com/science/book/9780124077164
100 1# - MAIN ENTRY--PERSONAL NAME
-- author.
264 #1 -
-- Amsterdam :
-- Elsevier ;
-- Oxford, UK :
-- Academic Press,
-- 2014.
-- �2014
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- rda
490 1# -
-- Elsevier and Tsinghua University Press computational mechanics series
504 ## -
-- Includes bibliographical references and index.
520 ## -
-- The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems.
588 0# -
-- Print version record.
-- fast
-- (OCoLC)fst00924897
655 #4 -
-- Electronic books.
776 08 -
-- Print version:
-- Zhuang, Zhuo.
-- Extended finite element method.
-- First edition.
-- Amsterdam : Elsevier ; Oxford, UK : Academic Press, 2014
-- 9780124077171
-- (OCoLC)884450045
830 #0 -
-- Elsevier and Tsinghua University Press computational mechanics series.
856 40 -
-- ScienceDirect
Holdings
Withdrawn status Lost status Damaged status Home library Current library Date acquired Total Checkouts Barcode Date last seen Koha item type
      Mysore University Main Library Mysore University Main Library 19/07/2019   EBKELV689 19/07/2019 Ebooks

No. of hits (from 9th Mar 12) :

Powered by Koha